oa South African Journal of Chemistry - Towards a mechanistic understanding of rheological behaviour of water-in-oil emulsion : roles of nanoparticles, water volume fraction and aging time

Volume 69, Issue 1
  • ISSN : 0379-4350



The viscosity of water-oil emulsions plays an important role in oil production and transportation. The objective of this study was to improve the basic understanding of the influence of nanoparticles on the viscosity of water-in-oil emulsions. Using crude oil and different industrial nanomaterials, the droplet size distribution, droplet mean size, and rheological models of emulsions were investigated. Experimental results show that the addition of nanoparticles increases the crude oil viscosity; however, the Newtonian flow behaviour of oil is not affected by nanoparticles. It is observed that the viscosity of crude oil increased from 36.5 to 49 cP when the nanoparticle concentration was elevated from0 to 0.1 wt%. From the results of rheological experiments, it can be concluded that the influence of nanoparticles on the emulsion viscosity is mainly affected by the type and amount of nanoparticles, water/oil-ratio and aging time. Mean droplet diameter decreased from 5.68 to 4.11 micrometre when 0.1 wt% nanoparticles were added to emulsion. The results also suggest that the properties of stabilized water-in-oil emulsions are significantly time-dependent, and the droplet size and viscosity of emulsions is reduced by time. Most of previously published correlations have huge errors and could not precisely predict the apparent viscosities of non-solid stabilized and solid-stabilized emulsions. None of the previously utilized equations did ever consider the effect of added solids to the emulsion.

Loading full text...

Full text loading...


Article metrics loading...


This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error