1887

oa Litnet Akademies : 'n Joernaal vir die Geesteswetenskappe, Natuurwetenskappe, Regte en Godsdienswetenskappe - Aanpassing van grootte-mengsels tydens voorraadtoewysing in 'n kettingwinkel : natuurwetenskappe

 

Abstract

The allocation of stock to stores is one of the important processes in the management of a retail chain. In the clothing industry, allocation decisions include, amongst other; the calculation of the number of each size (for example small, medium and large) to send to each store. A case study of this problem in Pep Stores Ltd (PEP), a major retailer in South Africa, is considered in this article. In PEP, products are ordered from factories months before they are available in the stores. They are then shipped to the distribution centres, after which they are distributed by road to the stores. Underlying the distribution network are two processes: the planning process and the allocation process. During the planning process, preliminary allocation decisions are made. During the allocation process, when more recent sales data are available, the initial planning is adjusted, and decisions about the allocation of products and sizes to the stores are finalised. In this article, models are developed that can be used while making these final allocation decisions. The goal of these models attempts to allocate stock such that no store receives too much or too little stock of any size. Four models are presented in which the expected stock shortages and surpluses at stores are minimised. Two of them are goal programming models. The first goal programming model is not recommended, as the second model achieves better results in a shorter solution time. The second goal programming model achieves good results, but in some cases, the solution time is too long. Two relaxations of this model were developed in order to reduce solution time. These two models achieve satisfactory solution times and obtain, on average, an improvement of up to 27% on PEP's method according to the different measuring criteria.

Die toewysing van voorraad aan winkels is een van die belangrike prosesse in die bestuur van 'n kettingwinkel. In die klerebedryf behels toewysingsbesluite onder andere die bepaling van hoeveelhede van elke grootte (byvoorbeeld klein, medium en groot) wat aan elke winkel gestuur moet word. 'n Gevallestudie van hierdie probleem in Pep Stores Bpk. (PEP), een van die vernaamste kleinhandelaars in Suid-Afrika, word in hierdie artikel beskou. In PEP word produkte by fabrieke bestel maande voordat dit in die takke beskikbaar is. Vanaf die fabrieke word die produkte na hul distribusiesentra verskeep, van waar dit per pad na die onderskeie takke versprei word. Onderliggend aan die verspreidingsnetwerk is 'n beplanningsproses en 'n toewysingsproses. Tydens die beplanningsproses word daar voorlopige toewysingsbesluite geneem. Tydens die toewysingsproses, wanneer daar meer onlangse verkoopsdata beskikbaar is, word die aanvanklike beplanning aangepas en word daar finaal besluit hoeveel van elke produk en grootte aan elke tak gestuur sal word. In hierdie artikel word modelle ontwikkel wat gebruik kan word wanneer hierdie finale toewysingsbesluite geneem word. Die doelwit van die modelle poog om voorraad só toe te wys dat geen winkel te min of te veel voorraad van enige grootte ontvang nie. Vier modelle word aangebied waarin die verwagte voorraad-tekorte en -surplusse by die takke geminimeer word. Twee van die modelle is doelwitprogrammeringsmodelle. Die eerste doelwitprogrammeringsmodel word nie aanbeveel nie, aangesien die tweede model beter resultate lewer in 'n korter oplossingstyd. Die tweede doelwitprogrammeringsmodel lewer goeie resultate, maar die oplossingstyd is in party gevalle te lank. Daarom is twee verslappings van hierdie model ontwikkel met die oog op die vermindering van oplossingstyd. Hierdie twee modelle lewer bevredigende oplossingstye en toon 'n gemiddelde verbetering van tot 27% op PEP se huidige oplossing volgens die verskillende maatstawwe.

Loading

Article metrics loading...

/content/litnet/11/3/EJC164217
2014-12-01
2016-12-09
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error