n African Zoology - Digestibility of nutrients and aspects of the digestive physiology of the greater cane rat, in two seasons

Volume 45, Issue 2
  • ISSN : 1562-7020
  • E-ISSN: 2224-073X
This article is unavailable for purchase outside of Africa



The greater cane rat, , utilizes high fibrous plant material and is an important meat source in West Africa. An insight in its digestive physiology will enhance our understanding of its feeding habits. Digestibility coefficients of the food were determined during two seasons before the animals were euthanased. The distribution and concentrations of nutrients and energy in different parts of the gastrointestinal tract were determined at the time of day when animals practised coprophagy. Trial 1 diet in the wet season consisted of 36% neutral detergent fibre (NDF), 11% protein and 49% dry matter, while the Trial 2 diet in the dry season consisted of 53% NDF, 8-9% protein and 89% dry matter. The Trial 2 animals on the poor diet increased their daily nutrient intake, possibly increased the volume of digesta and practised frequently cophrophagy, so that faecal production was reduced and digestibility coefficients were relatively high. Coprophagy increased both protein and energy intake as soft pellets in the distal colon had higher protein and energy content than the hard faeces. Energy, protein and acid-detergent fibre were retained in the caecum of Trial 1 females and the caecum and proximal colon of the Trial 2 animals 16 hours after feeding, illustrating the importance of these two regions in the fermentation process. Water was absorbed in the distal colon as dry matter content of digesta increased 53%, 4% and 56% from the proximal colon to the distal colon. Animals produced hard faeces with only 16% and 5% lower moisture content in the dry season, compared to that produced in the wet season, as water was not a limiting factor during the trials. It was concluded that an increase in daily food intake, an increase in coprophagy and the presence of a colonic separation mechanism (that retains small particles) enable the greater cane rat to utilize high fibrous plant material. These digestive strategies seem to be comparable to those observed in other hystricomorph rodents.

Loading full text...

Full text loading...


Article metrics loading...


This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error