1887

n Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie - Dobbelstrategieë vir toevalsrye s

Volume 29, Issue 1
  • ISSN : 0254-3486
  • E-ISSN: 2222-4173

Abstract

Dit is 'n algemene opvatting dat dit nie moontlik is om suksesvol te dobbel teen 'n toevalsry (of aleatoriese ry) van nulle en ene nie. Ons gebruik idees van Kolmogorov-kompleksiteit om hierdie opvatting te bevraagteken. Ons wys dat alhoewel daar geen algoritme is waarmee ons 'n onbeperkte hoeveelheid geld kan wen teen 'n algoritmiese toevalsry nie, is daar wel vir elke so 'n ry 'n dobbelstrategie waarmee ons enige gewenste bedrag kan wen deur met 'n voorafbepaalbare bedrag 'n eenvoudige verdubbelingstrategie uit te voer. Ons kan ook dieselfde strategie gebruik om 'n onbeperkte hoeveelheid geld te wen, in die geval moet ons herhaaldelik geld rentevry kan leen.


There is a general consensus that it is not possible to gamble successfully against a random sequence. This consensus is based on results from probability theory that all gambling systems are in some sense futile and the idea that at any stage of the sequence, the next outcome is entirely unpredictable.
Our ideas of a random sequence are epitomised by the consecutive outcomes of the tosses of a fair coin, and we have strong intuitions about such a process. Defining randomness however, has been a difficult task. Fairly recently, the concept of has been spectacularly successful as a definition of randomness, capturing many of our most important intuitions regarding when something is random. The definition uses the following concept of .

Loading full text...

Full text loading...

Loading

Article metrics loading...

/content/aknat/29/1/EJC20470
2010-03-01
2020-07-07

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error