1887

n Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie - Vanaf die Fermat-punte na die De Villiers-punte van 'n driehoek s

Volume 29, Issue 3
  • ISSN : 0254-3486
  • E-ISSN: 2222-4173

Abstract

Hierdie artikel beskryf die ontdekking van die sogenaamde De Villiers-punte van 'n driehoek, die bewyse wat betrokke is, en trek die historiese oorsprong terug na die Fermat-punte van 'n driehoek, die swaartepunt van 'n driehoek, en 'n nuttige veralgemening van die Fermat-punte van 'n driehoek.


The article starts with a problem of finding a point that minimizes the sum of the distances to the vertices of an acute-angled triangle, a problem originally posed by Fermat in the 1600's, and apparently first solved by the Italian mathematician and scientist Evangelista Torricelli. This point of optimization is therefore usually called the inner Fermat or Fermat-Torricelli point of a triangle. The transformation proof presented in the article was more recently invented in 1929 by the German mathematician J. Hoffman.

Loading full text...

Full text loading...

Loading

Article metrics loading...

/content/aknat/29/3/EJC20478
2010-09-01
2020-07-13

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error