CASE STUDY

Cortisol and testosterone responses to training and competition stress in ice-dance skaters — a case study

Z Obminski1
R Stupnicki2
K Lerczak1
J Starczewska-Czapowska1
M Olszewska-Lelonkiewicz3
A C Hackney4

1 Institute of Sport, Warsaw, Poland
2 Academy of Physical Education, Warsaw, Poland
3 Polish Federation of Ice-Dancing, Warsaw, Poland
4 Endocrine Section, Applied Physiology Laboratory, University of North Carolina, Chapel Hill, North Carolina, USA

Introduction

Extensive research exists on the skating sports of ice hockey and speed skating. This research shows that these sports are physically demanding and stressful activities. Figure skating and ice-dance skating are Winter Olympic sports, yet little is known about the level of physiological stress in these sports. To address this lack of information, metabolic markers of stress (serum cortisol, testosterone and lactate) were measured in an ice-dance couple preparing for the 1998 Winter Olympics in Nagano, Japan. These metabolic markers were chosen based on previous work by Viru et al.12 with the intent of looking at both the acute and long-term consequences of training and competing on these parameters.

Case report

An elite Polish ice-dancing couple gave written informed consent to participate in the study. They were monitored throughout their 1997 training and competitive season (Polish National Championship (NC) December 1997, European Championships (EC) December 1997) before the Winter Olympics (January 1998). Their physical characteristics were as follows: male dancer – age 22 years, height 177 cm, weight 76 kg, 16 years sports training; female dancer – age 21 years, height 170 cm, weight 59 kg, 16 years sports training.

A single random blood sample was collected from the dancers in the morning during the pre-season training period (June 1997). Subsequently, resting blood samples were collected from the couple in the morning during their in-season training period (July - November 1997). Specifically, 18 days were selected for the in-season blood sampling (~1 week apart). In December 1997, during their competitive season, resting blood samples were taken on the mornings that any competitive activity was scheduled to be performed and in the afternoon immediately after dance routines (competitive - practice routines at the NC and EC). Following the EC, the couple underwent tapering in training to prepare for the Olympics. Resting blood samples were collected on the last three mornings of this taper immediately before they flew to Nagano, Japan.

All morning resting bloods were taken at ~08h00 before the dancers performed any physical activity. These samples were assessed for testosterone and cortisol only. As noted, on select afternoons (~17h00) of the NC and EC competitions blood samples were collected immediately after selected ice-dance routines (within 1 minute of ending the routine). These latter samples were examined for post-routine lactate concentrations to assess the physical demand of ice-dancing. Table I shows the details of all blood sampling times and procedures.

All serum samples were collected from whole-blood specimens which were stored appropriately until later analysis. Cortisol and testosterone were assayed using commercial enzyme-linked immunosorbent assay (ELISA) kits (Orion Diagnostica, Finland) and lactate was analysed spectrophotometrically (Lange, Germany).

Fig. 1 depicts the cortisol response of the dancers. The resting morning cortisol levels in the male and female dancers decreased during the in-season and competition period compared with pre-season levels. Interestingly, both dancers showed an elevation in the resting cortisol levels during the 3-day rest period before leaving for the Olympics. It also appears that the male’s overall responses were more variable than those of the female dancer.

Fig. 2 depicts the testosterone response of the dancers. There is a noticeable gender-related difference in the rest-
TABLE I. Blood sampling protocol

<table>
<thead>
<tr>
<th>Condition</th>
<th>Time of year</th>
<th>Blood sampling condition</th>
<th>Frequency of blood sampling</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-season (PRE)</td>
<td>June 1997</td>
<td>Resting (morning)*</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>In-season training (IN)</td>
<td>July - Dec 1997</td>
<td>Resting (morning)</td>
<td>Single, daily over 18 days throughout the season</td>
<td>4-minute 'free-dance' routine at competition in the NC</td>
</tr>
<tr>
<td>Competitive season</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Championships (NC)</td>
<td>Dec 1997</td>
<td>Resting (morning)</td>
<td>Single</td>
<td>4-minute 'free-dance' routine during practice session at the EC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post ID routine (afternoon)*</td>
<td>Single</td>
<td>4-minute 'tango' routine during practice session at EC</td>
</tr>
<tr>
<td>European Championships (EC)</td>
<td>Dec 1997</td>
<td>Resting (morning)</td>
<td>Single, daily over 3 days of competition</td>
<td>2.5-minute 'jive' routine during practice session at EC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post ID routine (afternoon)</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>Pre-Nagano Olympics (POG)</td>
<td>Jan 1998</td>
<td>Resting (morning)</td>
<td>Single, daily over 3 days before leaving.</td>
<td></td>
</tr>
</tbody>
</table>

* Morning = ~ 08h00
† Afternoon = ~ 17h00
ID = ice-dancing

Fig. 1. Resting (morning) serum cortisol responses of the dancers during training and competition, until immediately before the Winter Olympics. (PRE = pre-season; IN = in-season training (mean ± SD); NC = national championship; EC = European championships (1, 2, 3 = day 1, 2 and 3); POG = immediately pre-Olympic Games (1, 2, 3 = day 1, 2 and 3 before leaving)).

Fig. 2. Resting (morning) serum testosterone responses of the dancers during training and competition, until immediately before the Winter Olympics. (PRE = pre-season; IN = in-season training (mean ± SD); NC = national championship; EC = European championships (1, 2, 3 = day 1, 2 and 3); POG = immediately pre-Olympic Games (1, 2, 3 = day 1, 2 and 3 before leaving)).

Discussion

The data in this study are limited in nature, but nonetheless several compelling observations can be made. First, ice-dance training at this elite level is associated with a decrease in resting cortisol levels. However, these levels show marked fluctuations over time, as has been noted in other studies. Three days before leaving for the Nagano Olympics further declines in testosterone occurred. The decrease was more noticeable in the male dancer.

Lactate responses after the routines were similar in both dancers, ranging from 8.2 to 12.4 mmol/l. A lactate level of ~10 mmol/l or greater is considered maximal with regard to exercise. Therefore, the dancers responses suggest that the ice-dancing routines placed considerable stress on anaerobic exercise metabolism.
is in keeping with the results from other studies. The reduction in serum testosterone levels 3 days before leaving for the Nagano Olympics could represent a stress response, as has been suggested by others. Finally, the lactate findings suggest that the physical demands of both training and competition associated with ice-dancing can produce a response similar to other maximal exercise.

In conclusion, these results would suggest that international-level ice-dance skating is both physically and psychologically demanding.

REFERENCES

Lore of Running 4/e

Tim Noakes

Recognised as the world's classic work on running, the bestselling Lore of Running goes to the cutting edge of scientific enquiry in this completely revised and expanded fourth edition. Covering the most up-to-date research, this new edition transforms sport science's understanding of what causes fatigue in athletes, and how best to train body and brain to counter it. The definitive text for sports scientists and medical practitioners, and a complete guide for all runners who want to understand and enjoy their sport, Lore of Running features:

- NEW: exclusive and ground-breaking insights into what limits performance, and what to do about it – information no runner can afford to be without
- full coverage of the physiology and biochemistry of running, backed up by clear summaries
- everything you need to know about training set out in Noakes's Fifteen Laws, with additional advice for novices, women, athletes over forty, and children
- expert help with preparing body and mind for racing: planning the year, planning individual races, race strategies
- an analysis of nutrition, carb-loading, and hydration, which debunks entrenched myths and distinguishes fact from fiction
- authoritative advice on how to prevent and treat injuries
- NEW: answers to intriguing scientific questions, such as 'Why can some people run faster than others?'
- guidelines to achieving the essential balance between athletic ambitions, work, family, and social life
- NEW: interviews with nine world-class runners who share their winning secrets

Acknowledged as the most comprehensive and trusted reference work in its field, this is the best investment any runner can make.

November 2001, hardcover, R420 including postage

Clinical Sports Nutrition

Louise Burke and Vicki Deakin

A unique reference providing state of the art sports nutrition information, coupled with advice on how to apply sports nutrition guidelines in a clinical and practical framework. Thoroughly revised and updated with contributions from over 25 experts in their fields. Each chapter contains specific reviews followed by practice tips.

Established as the leading international text on sports nutrition, Clinical Sports Nutrition is the definitive guide to the nutrition and physiological principles, practices and research of elite and serious athletes. The book covers a comprehensive range of topical issues on sports nutrition, presenting the theory and most up-to-date research findings in clear, readable terms and incorporating highly practical applications specifically for practitioners working in the sports arena. It also includes chapters on children, adolescents and veterans involved in sport, athletes with disabilities, catering guidelines and special considerations associated with training under varying environmental conditions, such as heat and altitude. This valuable reference book is essential reading for sports dietitians, practitioners, coaches and trainers and students of sports-related subjects. The second edition has been thoroughly updated to incorporate the latest research, drawing on the experience of leading-edge academics and sports dietitians from Australia, Canada, the United States, Scotland and Finland. This expanded edition has seven more chapters and a fully updated chapter on dietary supplements and ergogenic aids.

December 2000, softcover, 759 pp, R850

Orders: SAMA Books, Private Bag X1, Pinelands 7430. Tel (021) 530-6527, Fax (021) 531-4126. Please make cheques payable to the SA Medical Association. Please allow 4-6 weeks for delivery of imported titles.